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ABSTRACT

This report provides a technical overview of research supported under an ASSERT (Aug-
mentation Awards for Science and Engineering Research Training) grant administered by the
U.S. Air Force Office of Scientific Research. The grant was tied to a parent grant AFOSR-90-
0226 and its follow-on F49620-96-1-0059, both of which bear the title The Nonlinear Control
Theory of Complex Mechanical Systems. The period of performance of the subject ASSERT
grant was September, 1994, through August 31, 1997. Funds from this grant were used to sup-
port the PhD thesis research of Geoffrey Howell as stipulated in the original proposal submitted
in the Fall of 1993. Mr. Howell is expected to finish his dissertation and all degree requirements
in 1998. The research described in this report (and which will be reported in greater detail in
Geoff Howell's dissertation) is concerned with two interrelated themes in the control of super-
articulated (or underactuated) mechanical systems: (1) how to control the degrees of freedom
which are directly actuated without eliciting undesired behavior in the unactuated degrees of
freedom, and (2) how to prescribe motions of the directly actuated degrees of freedom to
achieve motion objectives for the degrees of freedom which are not directly controlled.
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1 Introduction and Report Summary

The research discussed below has been aimed at a number of the mathematical and engineer-
ing problems arising in planning and controlling the motions of complex vehicles containing
elastic, fluid, and other types of components which may store energy. This work is closely
tied to a larger body of research of the P.I. (Baillieul) on the control theory of complex
mechanical systems. Since the beginning of the ASSERT project, the scope of the work has
been broadened somewhat to study the use of various energy-storing appendages to provide
primary actuation in simple bipedal walking machines. The funds provided by the grant
have supported the PhD studies of Geoffrey Howell. Mr. Howell’s research has progressed
to the point that the award of his (PhD) degree is expected in 1998. His thesis will docu-
ment both theoretical and experimental work on motion planning and control of autonomous
mobile mechanisms. Technical details of some of his work are reported here. The broader
technical issues associated with our ongoing work on the control of mechanical systems have
previously been reported in:

1. Final Report of AFOSR-90-0226 The Nonlinear Control Theory of Complex Mechanical
Systems by J. Baillieul, submitted on April 29, 1996.

2. Annual Progress Report of F49620-96-1-0059 The Nonlinear Control Theory of Com-
plex Mechanical Systems by J. Baillieul, submitted on October 15, 1997.

We refer to these reports for further details, and we note that the more recent of the two
reports cites fifty one (51) archival publications which collectively document the research
supported under both the ASSERT and parent grants.

The principal topics of the present report are:

1. Control of Single Degree of Freedom Hamiltonian Systems with Impulsive Inputs
(Chapter 2 below), and

2. Analysis of the Pendulum-driven Rimless Wheel (Chapter 3 below).

An edited version of the paper appearing as Chapter 2 appeared in the Proceedings of the
1996 IEEE Conference on Decision and Control.

The unifying theme of the research herein described is the multiobjective control of mechan-
ical systems. Howell’s thesis will be concerned in part with controlled motions of simple
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vehicles having dynamic loads (elastic bodies, fluid filled tanks, etc.) which can store energy.
The objective in these control problems is to execute motions between prescribed points
while managing the dynamics of the loads, which are not directly controlled and which re-
spond to the motions of the vehicles. For instance, in moving a vehicle between prescribed
points, we shall typically want the internal energy to be zero at the beginning and ending
point. Other energy management objectives can also be considered.

The next two sections of the report treat some specific model systems in which we use directly
controlled degrees of freedom to accomplish specified motion objectives for the degrees of
freedom in the system which are not directly controlled. The swing-up and stabilization of
a pendulum on a cart using impulsive inputs illustrates a novel approach to control which is
relatively straightforward to implement (as reported) while at the same time being applicable
to a wider class of nonlinear mechanical systems (work in progress). This research is part
of a continuing effort to understand how the geometry of the wave form of an input, and in
particular its frequency content, affects the dynamics of controlled nonlinear systems. Our
goal is to understand how actuator inputs should be designed so as to be maximally effective
in controlling the degrees of freedom which are not directly actuated in a super-articulated
mechanism. Motivated by the signal characteristics seen in biological motor control, we have
studied impulsive inputs to control multiple pendulum systems. While multiple pendula
typically exhibit chaotic responses to smooth periodic forcing (e.g. by sinusoids), we have
found that carefully designed impulse trains can be used to elicit a variety of interesting
dynamic responses in such systems. The next chapter discusses this circle of ideas for a class
of controlled single degree of freedom systems.

Another goal of our research on energy management in autonomous vehicles is to design biped
robots where walking cycle in actuated by oscillatory motions of an attached pendulum.
Completely passive biped robots have been constructed (by other researchers) which, given
proper initial conditions, walk without intervention down slightly sloping ramps. The energy
lost at each (totally inelastic) footfall is restored by the conversion of gravitational potential
energy to kinetic energy. Our contribution to this line of research is to add a controlled
pendulum-like appendage to the passive walker which my be ”swung” in carefully designed
patterns to cause the biped to walk on level surfaces and even up slight slopes. Preliminary
analysis of such a mechanism appears in Chapter 3, below, and more complete results will
appear in the forthcoming thesis of G.W. Howell.



Control of Single-Degree-of-Freedom Hamiltonian Systems
with Impulsive Inputs

S. Weibel G. Howell
Dept. of Aero/Mech Engineering Dept. of ECS Engineering
Boston University Boston University
Boston, MA 02215 Boston, MA 02215

J. Baillieul
Dept of Aero/Mech Engineering

Boston University
Boston, MA 02215

Abstract

In this paper, we develop a theory for the feedback control of single degree-of-freedom Hamil-
tonian systems, utilizing inputs which approximate §-functions. The main idea is that by using
“spikey” control inputs, it is possible to force the system to jump between energy levels. Since
there is a correspondence between energy levels and orbits for Hamiltonian systems, this control
of system energy results in control of the system dynamics. Impulsive control has proven useful
in simulations and experiments involving the global reconfiguration of mechanical systems. We
present application of the control to the cart and pendulum swing-up problem.

1 Introduction

Recent and planned real-time control implementations in our laboratory (See [7]) have led us to
study the use of intermittent actuator pulses to control complex physical systems. While there are
elements of modern digital control theory which are useful in developing pulse-modulated control
designs, there are several interesting issues which are not fully addressed by existing theory. One
general question, which we treat here in the special case of low-order Hamiltonian control systems,
involves the timing of pulses. Motivated by results from biological motor control, ([5]), we find that
the timing of actuator pulses can be effectively tailored to produce the maximally efficient transmis-
sion of energy through a complex multibody system. For the systems studied below, pulsed inputs
are most effectively applied when the system passes near to certain “advantageous” points in the
phase space. At these advantageous points, which lie along easily characterized curves in the phase
plane, the system is maximally able to absorb energy from the pulse. Feedback of a non-classical
type thus plays a role in our control theory of pulse modulated systems. While a general discussion
of pulse-shaping and pulse-timing for motion control of legged robots, snake-like robots, and other
mechanisms is beyond the scope of the present paper, we do provide very explicit results on optimal
pulse timing for a broad class of low-order mechanical systems.

The paper is organized as follows. In Section 2, we describe the class of single degree-of-freedom
(SDOF), velocity-controlled Hamiltonian systems which are the principal objects of study in the
paper. The implementation of impulsive inputs is discussed, and a general formula for “optimal”
application points in the phase space is given. (The objective is to apply an impulsive input to add
or remove the maximum possible amount of total energy from the given degree of freedom.) Section
3 discusses control synthesis, taking into account the possibility of actuator saturation. Section 4
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applies the method to the example of swing-up control of a pendulum on a cart. Both damped
and undamped pendulum dynamics are considered, and the results here indicate that the idealized
Hamiltonian models are useful in guiding the design of control laws for mechanical systems in which
damping is present. We also describe an actual experimental implementation in which there is the
added complexity of a fairly short track on which the cart is allowed to travel.

2 SDOF Hamiltonian Systems and Impulsive Inputs
2.1 Impulse Response of SDOF Hamiltonian System;

Consider Hamiltonian systems of the form
Hp,g:U) = 5[+ mf@UQ) + Vala,V) (1)
where Vo(q,U) is the augmented potential [2]
Va(q,U) = —%mU(t)g +V(qg)
and where U(¢ fo u(r)dr, f € C"(q), and V, € C"(q), » > 2. Systems of this type arise from

a reduction procedure described in [2] for a class of velocity-controlled, single degree-of-freedom
mechanical systems. The equations of motion corresponding to (1) are

L+ mfU ()
o+ mAQU)] ( 9@ 174y -

Q.
Il

6V Va(q) @)

p
We wish to use u(t) to produce desired changes in (unforced, i.e. U(t) = u(t) = 0) system energy

iy

where we have introduced the shorthand notation Ho(p,q) = H(p,¢;0). From (1) and (2), the
instantaneous change in energy is ,

0H(p,q;U)
ot

The change in energy on a time interval ¢y <t < ¢ is obtained by integrating 80H /8t¢:

=[(p+mf(Q)U(t)) f(9)] u(t) = F(p,q,U)u(t)

to

AHG.a0)= [ P09, UG @)

The goal of this paper is to show how to prescribe AH by appropriate choice of u(-). The emphasis
will be on impulsive inputs, the most basic model for which is u(t) = §(t —t') for ¢ < ¢,¢' < t;. With
this choice, the corresponding U(-) in (4) is the Heaviside step function, and some care is involved in
evaluating the product u()U(t). (See, e.g., [9].) Since we concentrate on actual implementations in
which impulses are well approximated by narrow square waves, it will be natural to adopt the (fairly
standard) convention ([9]) that the product is given by u(t)U(t) = 36(t —t'). More specifically,

suppose
0 ift<t
up() =< L ift<t<t+w . (5)
0 ift>t'+w
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Then, we take
0 ift<?
Uw(t)z{ = i <t<t' 4w . (6)
1 ift>t'+w

If G(t) is any continuous function, and tp < ¢ < t; — w, then

t t'w
1
/ G(t)uw(t)Uy (t)dt = Ez—/ G(t)(t —t')dt.
to t .
Elementary calculus (I’Hépital’s rule) shows that the limit as w — 0 is G(#'). Hence, the change in
energy associated with the impulsive input u(t) = ké(t —t’) (where k is some “gain” coefficient) is
2

AYH(p,0) = kpSa) + Smi(0)"

Using the square-wave approximation u, (t) for §(t —t'), we write

t'+w
M=y [ P00 0.0)d ™)
‘l
We shall make use of the fact that limy_o A*H, = Af;' H, and more specifically we shall use the
following theorem.
Theorem 1 There exist numbers, K > 0 and 0 < eg(p, ¢) < 1 such that for 0 < € < g,
|(A*H,|,_,) — AfH| < Ke

Proof: Without loss of generality, let ¢ = 0. We expand A¥H,, in a Taylor series around ¢ = 0:

¢ : o ‘[/O0F ., OF ., OF
,/0 F(p$ q, Uw)dt - fF(PO»'QO: UO) +/(; [(E{q + a—pp'*' Wu>

with po = p(0), go = ¢(0), and Up = U(0). By (2) and U(0) = 0, we can show

‘(61". 0F ., OF )
+ 5P+

t+ 0(t2)] dt

t=0

3_qq dp Flie
where K is an (1) constant. Therefore

‘<K,

|Aa*H, - AFH| < %/6 [Kt+O(t?)] dt < Ke
0

which proves the theorem. O

2.2 Maximal and Minimal Application Points

Suppose we have a system moving freely on an orbit of energy Ho. Denote the set of points on
this orbit £ = {(g0,po) : Ho(go, o) = Ho}. For every point in Xo, AsH = AlH defines a mapping
AsH : To x R — R, where we use the fact that g and po are related by Hp. It is only natural to ask
which points in £y maximize or minimize AsH. Extremal points (p(¢est, Ho), gezt)) may be shown
to satisfy the following equation:

1052~ 3m3L (#o — Vi(a) = 210 5/ (B = V@), 0

We define those points which minimize and maximize |A;H| as follows.




Definition 1 A point (p(qest, Ho), gext) € Lo is called e maximal application point if gz mazimizes
|A6HIEO|' (These points may be found as solutions of equation (8).)

Definition 2 A point (p(g, Ho), q) € Zo s called a minimal application point if AsHlg (g) = 0.

Remark 1 On some orbits Xg, AsH |y, (¢) is never zero. (This happens, for instance, if £q consists
of a single equilibrium point of the unforced dynamics.) Hence minimal application points defined
in this way may not exist on some orbits.

As suggested by the presence of the absolute values in the preceding definitions, our interest is
in the magnitude of the energy change produced by an impulse. We shall see in following sections
that knowledge of the minimal and maximal application points is useful in control synthesis.

3 Control Synthesis for Planar Hamiltonian Systems

3.1 Shaping the Control Input

The theorem of §2 provides the basis for control synthesis with impulsive inputs. In control synthesis,
our goal is to design a rectangular pulse which produces a desired change in energy. Suppose we
choose our control input u(t) to be

k Ly
w=rw={ g ot ~ ©

where k is a constant gain we will determine later, and r(¢) is a unit area rectangular pulse. Assuming
w is sufficiently small, by Theorem 1,

t' 4w
[ Pew.a0.v0pw = AHGE),a) +O0w),

where AXH(p(t'), q(t')) = kp(t') f(a(?')) + V—z”‘-f(q(i'))Q. Then given some desired energy state Hy,
we choose k such that

Hq—Ho(p',¢') = AFH(p(t'), q(t") + O(w). (10)

where (p',¢') = (p(t'),q(¥')). We compute the ideal gain k! from the above equation: assuming
f(g(t')) # 0, let k¥ be the smaller of the two roots of the quadratic equation

.2
Ha—Ho(p',q') = kp'f(d) + %f(q’)z» (11)

Remark 2 It is interesting that there are generally two roots to this “gain equation.” The physical
reason, of course, is that our input should be thought of as a velocity, and this velocity may be
applied in two different directions with different “levels of effort” to produce a desired AH. Note
that it might happen that Hy — Ho(p', ¢’) is negative and of large magnitude such that there are no
real gains k satisfying (11). We shall for the moment assume this does not happen, and we treat
this case separately below.

If there are no modeling errors (i.e. if (1)-(2) describe the physical system exactly), then in the
limit as w — 0, the ideal gain k! transfers the system from the initial energy state Hy to a final
energy state Hy in one step. In the non-ideal case in which pulses have finite non-zero width w,
we shall show that under mild hypotheses a sequence of rectangular pulse inputs may be defined
which steer the energy level toward Hy. A sufficient condition to be able to define such a sequence
of pulses is that the zeros of f(-) are disjoint from the critical points of the potential function V/(-)
and do not accumulate at a critical point of V(-). Under this hypothesis, we show that the system
cannot get stuck at a state (¢/,p') where A¥H = 0. This is the essential content of the following
theorem.



Figure 1: A component neighborhood of B,

Theorem 2 Suppose there is given a Hamiltonian H(p,q;U) as in (1) with corresponding equations
of motion (2). We further suppose that f(-) and V(-) are analytic functions and that for some 7o > 0

(i) For 0 < n < no, the set {q : f(q)? < n} is composed of disjoint, open, finite intervals, each of
length at most €(n) where e(n) = O(n) as n — 0, and

(i) {g : f(0)* <m}n{e : 157 (@I < m} =0

Let Hy be some initial energy state and Hy some desired final energy state. Let w > 0 be given such
that w € 1. Consider a sequence of times tg < t1 <tz < ... such that (t; —ti_1) > w, and define
the sequence of rectangular pulses

'f_v_u" tE[z ;ti— + )
wilt) = { te [t,il + iu,t:;) (12)

where

e — { smallest root k of Hg — Hi_y = kp' f(¢') + ZE2£(¢')? if £(¢')* > o

0 otherwise.

(here (pi—l;gi—l) = (p(ti—l),‘I(ti—l)) and H;1 = H(p(ti_l),q(ti_l)). Then the sequence H, =
Ho(pn,qn) — Ha as n — 0.

Proof Define for each > 0
m 2
By = {(g,p) : Ipf(DI + 5 f(0)* < n}-

We claim that any unforced trajectory of (2) which enters or begins in By, will leave B,, after a
finite amount of time. Indeed, if (¢,p) € By,, then 2 £(q)? < no, and under the hypothesis of the
theorem, lav (¢)| > no. Hence, |p| > 1o, and we shall assume, without loss of generality, that p > no.
Under our hypothesxs on f(-), the set By, is the union of regions in the phase plane of the form
depicted in Figure 1. Unforced trajectories of (2) evolve according to

(50)= (4w ),




and if (¢(%0), p(to)) € By,, then either (g(t), p(t)) leaves B, (trajectory (a) in Figure 1) or p(t) be-
comes positive (trajectory (b)). If p(t) becomes positive, it must remain positive and bounded away
from zero as long as (¢(t), p(t)) € By,,. Hence ¢(t) will be positive and bounded away from zero, and
as long as (q(t), p(t)) € By, ¢(t) will continue to increase. Since {q : (¢,p) € B,,} is contained in
the union of a set of subintervals of uniformly bounded width, (¢(t), p(t)) must exit from By, after
a finite amount of time. This Jproves that free (unforced) motions of (2) do not get stuck in regions
of the phase plane where f(g)? < no. Thus, the definition of elements in the sequence of rectangular
pulses prescribed in the statement of the theorem continues with the gams not “getting stuck” at
zero until the system approaches the desired energy level.

Next we show that with impulse gains defined as in the statement of the theorem, the system
moves through a sequence of energy levels H,,, such that H, — H; as n increases. The first energy

transition is to

Hy = Ho+AMH,
= Ho+AMH 4+ O(w) (by Theorem 1)
= Ho+ Hg— Hy+ O(w)
= Hi+ O(w).
In the limit as w — 0, it would be possible to make the desired energy transition in a single step.

For small w > 0, the system moves very nearly to the desired energy in the first step. After this,
the result of the next rectangular pulse is a transition to the new energy level

H, = H, + AF2H,,.

Rather than invoke Theorem 1 again at this point, we refine our estimate of A*2H,,. One can show
that for k; defined as in the statement of the theorem that

AYHy, = AMH 4+ M - (Hg — Hi—1) - w+ o(kiw), (13)

where M is a constant which may be chosen to be independent of (gi—1,pi=1)- Since Hg— H; = O(w),
we find

Hy = Hi+APH 4+ M- O@w?) + o(kiw)
= Hi+Hq— Hi+0O(w?)
= Hd+(’)(w2).

Reapplying this type of analysis, it is possible to conclude that Hy — H, = O(w"), proving the
theorem. O

There are two important ways in which the rectangular pulses we take as our inputs must ac-
tually differ from 6-function idealizations. First, because time is quantized in our digital hardware,
there is a minimum pulse-width which can be achieved. For the purposes of the present paper,
we shall assume, however, that our pulse widths w may be chosen as small as needed. There are
also magnitude constraints on the forces which our actuators may produce. Equation (9) does not
account for possible limitations on the magnitude of k! /w. It is possible that for some values of k7,
the input &//w may not be physically realizable by the source of actuation. In this case, a longer
sequence of rectangular pulses u;(p, ¢,t) may be required to achieve a desired energy state.

To account for constraints on the output magnitude of the system’s actuator, we must make
appropriate modifications to the control strategy of Theorem 2. Let the maximum allowable gain
k be denoted kp,qz, and assume the restrictions on input gain are symmetric with respect to sign.
Then, the control input u(t) is adjusted to account for this maximum value:

(t) = %sgn (lc’) - min (||k1||,kma,) tet,t' +w)
we= 0 tg [t +w)

10



We again control the system by prescribing a sequence of rectangular pulses applied at a sequence of
times fy < t; < .... Under the hypotheses of Theorem 2, it is still possible to use magnitude-limited
rectangular pulses to steer the system (2) between chosen energy levels. This is made precise in the
next theorem.

Theorem 3 Suppose there is given a Hamiltonian H(p, q; U) as in (1) with corresponding equations
of motion (2). We further suppose that f(-) and V(-) are analytic functions and that for some 1o > 0

(i) For 0 < n < no, the set {q : f(q)? < n} is composed of disjoint, open, finite intervals, each of
length at most ¢(n) where e(n) = O(n) as n — 0, and

(ii) {g : f(9)* <m}Nn{a : I55(0)] < mo} = 0.

Let Hy be some initial energy state and Hy some desired final energy state. Let w > 0 be given such
that w € 1. Consider a sequence of times tg < t; <ty < ... such that (t; —t;—1) > w, and define
the sequence of rectangular pulses

Lsgn (k1) - min (||6]]], kmas) T € [tiz1,tim1 + w)
ui(t) - { 0 t € [ti—l + w,ti) (14)

where kf is sequence of ideal gains defined in theorem 2. This sequence of rectangular pulse inputs
steers the system (2) through a sequence of energy levels H; such that as i increases H; — Hy.

Proof (Sketch.) Suppose pulse magnitudes are bounded by kmqz. The change in energy produced
by applying the rectangular pulse (of amplitude &£ and width w)

[k teftt+uw
"(t)“{ 0 t¢[t’,t’+wg

to (2) is ,
m

A*Hy = kuwpf(q) + K*w? 5 £(9)* + o(w).

Essentially the same argument that was applied to prove theorem 2 establishes the conclusion of the

present theorem. Of course, convergence is slower by a factor of O(1/w). O

Remark 3 The two theorems proved in this section show that very simple pulse modulated control
designs may be applied under mild assumptions to steer a single degree of freedom Hamiltonian
system of the form (2) between desired energy curves in the phase plane. By combining such
pulse-modulated steering with the free evolution of the dynamics along constant energy curves, it is
possible to steer the system between states which may be of interest. While this type of control has
been shown to work even in the presence of constraining amplitude bounds on the inputs, it remains
to show how effectively pulse modulated control may be applied in situations where speed and input
energy are of concern. In the next section, we address the question of optimal timing of pulses.

4 Impulsive Control of the Cart and Pendulum

4.1 System Model

In this section, we consider the problem of controlling the cart and pendulum, as shown in Figure
2. In the figure, 6 represents the angular displacement of the pendulum from vertical, and go is
the position of the cart. M and m are the masses of the cart and pendulum, respectively, £ is the
length of the pendulum, and g is the gravitational acceleration. The system in Figure 2 has the
Hamiltonian

H(p,q;U) = [p—mlcosq U] — %mU(t)z + mgl(1 — cos q) (15)

1
2mf?
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Figure 2: The Cart and Pendulum

{a) Maximally advantageous apphcation paints for the cart and pendulum {b) Minimatly advantageous application points for the cart and pendulum

| / |
T

q.min
°

T

25 E) s o [X} 1

° 0s 1 15 2 15 2
HO (Energy) HO (Energy)

Figure 3: Maximal and minimal application points for the cart and pendulum, where m =g =¢=1.
Note that a minimal application point does not exist for Hy < 0.13. :

where ¢ = 6 and corresponding equations of motion

i = o (b meeosqU() (16)

p —%h)—-mEcoqu(t)]sian(t)+mg£sinq. (17)

4.2 Effects of Input Shape on Change in Energy

From (15), we have
F(p,q,U)=— (%(p —~mflcosqU(t))cosq + mU(t))

If u(t) = 6(t — t'), then _
AsH = —% (p(t') — mlcos q(t')) cos q(t')
From (8), the maximal application points are those points (p,¢) € Zo which satisfy

— gsingcosq — p®sing = psingcosq, (18)

where p = p(g, Ho) = %+v/2(Ho — (1 — cosq)). The minimal application poinfs are simply those
points (p,q) € o for which AH; = 0. Plots obtained numerically for the maximal and minimal
application points are shown in Figures 3a,b, where m, g, and £ were all taken to be 1. Note in
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Figure 4: (a) Selected Constant Energy Curves and (b) Corresponding AH,, for the Cart and
Pendulum

Figure 3b that a minimal application point does not exist for Hy < 0.13. As shall be seen in the
next figure, this is because the AH;s curve lies entirely above the g-axis for energy levels smaller
than 0.13. The number of solutions for each changes at the energy Ho = 1, where the orbit Xg
passes through (¢,p) = (£7/2,0). Nonlinear controllability analysis[10] reveals that the system is
neither locally nor globally accessible at these states. In Figure 3a, two new branches of solutions
are created, both of which terminate at ¢ = %7 within the plotted range of Hy. Another branch
of solutions at ¢ = £7 forms for Hy > 2. The solution corresponding to Hy = 2 is the separatrix
solution, as shall be seen in the next set of figures. The two “bifurcated” branches of solutions in
Figure 3a ultimately limit on the ¢ = % solutions. In Figure 3b, a new branch ¢ = &7/2 is created
at Ho = 1, and exists for all Hy. Therefore, an input applied at ¢ = +7/2 for Hp > 1 produces
no change in energy. The original branch of solutions in Figure 3b also limits at ¢ = £, but does
not persist. Like ¢ = £x/2 at . Hp = 1, the value of Hy where ¢ = £7 is both a maximal and
minimal application point. These degeneracies are the result of the presence of cusps in AHj at the
degenerate points. ’

Results of numerical investigations of AH,, for varying Hy and w are shown in Figures 4 and 5.
Figure 4a shows various orbits of the unforced, undamped pendulum for different energies Hy. The
images of the orbits in Figure 4a are shown in Figure 4b. The curves in Figure 4b were not deter-
mined by direct computation of AHy(pg, o). Rather, they were computed by running simulations
of the pendulum system with a pulse applied at (po, go), and then measuring the change in energy.
In the simulations, parameter values m = g = £ = 1 and w = 0.01 were used, with a time step of
0.001. These experimental curves closely match curves obtained from AHj, and confirm our earlier
observations on maximal and minimal application points. '

Figure 5 shows the effect of variations in w, given initial conditions with energy Hg. Parameter
values used in simulations are listed in the following table:

Pulse width w 0.01 | 0.1 | 0.5
Mass m 1 1 1
Gravity ¢ 1 1 1
Initial energy Hy 1 1 1
Integration time step | 0.001 [ 0.01 | 0.05

The effect of increasing w is to shift the values ¢™%% to the right above the g-axis, and to the left
below. It is also clear that the shifts of AHg 0, and AHy,; were accurately predicted by Theorem 1.
Note that the curves for AH,, that lie above the z-axis are for negative values of p, and similarly
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Figure 5: AH,, vs. ¢ for the Cart and Pendulum, Hy =1

below the g-axis for positive p. The pulses used in these calculations were positive, meaning the input
was a positive acceleration of the cart. We see that the pendulum experiences an increase in energy
when the cart accelerates opposite the direction of the motion of the pendulum, and-a decrease when
the cart accelerates in the same direction. This may be interpreted as saying that the acceleration
the pendulum feels is due to the change in relative velocities of the cart and pendulum. Also clear
from the plot is a decrease in the maximum change in energy with increasing w, as evidenced in the

plot of AHp 5.

4.3 Stabilization of the Inverted Equilibrium - Simulation Results

We now simulate the controlled stabilization of the inverted equilibrium of the pendulum. Because
any lab experiment would require us to account for damping, we also consider impulsive control of
the damped cart and pendulum under the assumption that damping is small. Given that our control
synthesis is based on precise knowledge of the separatrix energies of the system, we would expect
that impulsive control would fail in the presence of damping. We shall see that, in the absence of
any compensation for damping, impulsive control does fail in the damped case. It performs well
enough, however, that a hybrid control scheme can be developed which features the simplicity of
impulsive control for swing-up and standard linear control for stabilization.

The results of the simulations are depicted in Figures 6 and 7. Parameter values used in the
simulations are listed in the following table:

|| Parameter [ Simulation 1 | Simulation 2 ||
Mass m 1 1
Gravity ¢ 1 1
Damping coefficient ¢ 0 0.05
Gain G, 5 5
Initial pg 0 0
Initial ¢ 0 0
Desired energy Hg 2 2
Pulse width w 0.01 0.01
Duty cycle (t; — ;1) 0.25 0.25
Integration time step 0.001 0.001
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Figure 7: u(t) vs. t for the Undamped and Damped Systems

Both the undamped and damped systems move near the desired energy within a small number of
iterations (in this case, four), as predicted. The undamped system continues to move towards the
separatrix, and stabilizes at (—m,0). The rapidity of convergence is seen in Figure 7, where input
magnitude has fallen to less than 0.01 within three integration seconds. The damped system never
converges to the desired energy. As seen in the figure, input magnitudes fall off quickly as the system
approaches the separatrix, but oscillate about u(¢) = 0 with small magnitude for the remainder of
the simulation. However, the trajectory does pass close enough to the unstable fixed points to switch
to linear control.

4.4 Stabilization of the Inverted Equilibrium - Experimental Results

Recent experiments in the Boston University Robotics Lab have verified that impulsive controls
may be used in conjunction with linear control to regulate swing-up and stabilize the cart and
pendulum experiment at the inverted equilibrium. A photograph of the experimental apparatus and
a schematic of the system appear in Figure 8. The effective pendulum length, when it is modelled
as a point mass pendulum, is 0.25 meters.

4.4.1 Control Synthesis

The control we choose for the pendulum swing-up maneuver involves applying impulses at the max-
imal application point of ¢(¢;) = 0 radians. The impulse application times t; are determined as
the experiment progresses. Each of these energy-pumping impulses increases the energy of both the
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Figure 8: Cart with pendulum apparatus: (left) photograph and (right) schematic.

pendulum and the cart. The finite track length for the experimental apparatus shown in Figure 8,
however, imposes restrictions on the shape of the control input. After each energy-pumping impulse,
a counter-input must be applied to halt the cart before it crashes into its limit stop. To achieve
the goal of inverting and balancing the pendulum, the counter-input must be designed such that it
does not remove more energy from the pendulum than was provided by the energy-pumping impulse.

We choose for the counter-input a low-amplitude pulse of relatively long duration. The area of
the counter-pulse is set to be equal to that of the energy-pumping impulse so that the counter-pulse
will have an equal but opposite effect on the cart dynamics. The long duration of the counter-pulse
ensures that the pendulum is farther away from the maximal application point during application
than it was for the energy-pumping impulse. This causes it to have less of an effect on the pendulum
energy. The net effect of each impulse/counter-pulse pair is to increase the pendulum energy.

After the impulsive input sequence has inverted the pendulum, a linear regulator is switched on
to stabilize the system about its inverted position. The details for the design of such a regulator
may be found in [8].

4.4.2 Experimental Results

The results of the control algorithm may be seen in the pendulum phase plot of Figure 9. The initial
condition of the pendulum is (g,¢) = (—0.30,0.00). The pendulum velocity data is noisy because
it was calculated from position encoder readings. Despite the noise, the increase in Hamiltonian
energy due to the impulsive inputs may be seen as an increase in radius each time the angle of the
pendulum crosses ¢ = 0 radians.

The corresponding control input shown in Figure 10a is the acceleration of the cart. As noted
in Theorem 1, square-wave approximations to the delta function have an upper bound on their
duration, w. To focus the effect of the input near the maximal application point, the width of each
impulse is set to be inversely proportional to the pendulum velocity, ¢(¢;). The impulses in Figure
10a may be seen getting taller and narrower as the experiment progresses. Immediately following
each impulse in this graph may be seen the related low-amplitude counter-pulse.

Figure 10b, which displays the cart velocity, shows that the counter-pulses indeed have an oppo-

site effect on the cart energy by driving the velocity back down to zero. The abrupt change in cart
velocity at ¢ = 4.75 seconds reflects the action of the linear control law as the pendulum enters the
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Figure 9: Pendulum phase plot showing effect of impulsive inputs and stabilization at the inverted
equilibrium. Following the path of the pendulum in its clockwise spiral from the origin, an increase
in radius (and hence, energy) is evident each time the pendulum received an impulsive input as it
crossed ¢ = 0 radians. A linear regulator stabilized the pendulum about its inverted equilibrium
when the pendulum entered its region of stability at (—m,0).

region of stability of the linear regulator. Figure 10c shows the position of the cart as a function
of time. Note that the entire swing-up maneuver required a total of less than 10 cm of cart track
length.

Experimental results on controlling a swing-up maneuver and balancing the pendulum-on-a-cart
system have so far been very encouraging. In preparing the full conference version of this paper, it
is planned to provide comparisons with other approaches to swing-up and balancing control. (Cf.
[4].) Short of this at the present tifne, we note two advantages of our impulsive control strategy: (i)
The implementation required very few details about the physical characteristics of the pendulum-
on-a-cart system; no effort to identify physical parameters was involved. (ii) As Theorem 2 indicates
and experiments confirm, magnitude limits on the impulsive inputs have little effect on the system’s
ability to perform the swing-up.

5 Conclusion

This paper has presented preliminary results of a research program aimed at developing a theory
of pulse-modulated control of mechanical systems. While our aim has been to develop a theory
which can be applied to a wide class of mechanical systems (See [1]!), the emphasis here has been on
velocity-controlled, single degree of freedom Hamiltonian systems. We have introduced an energy-
based global control method for such systems based on inputs which approximate é-functions. In
§2, we characterized the response of Hamiltonian systems to impulsive inputs. Using the change
of energy produced by a §-function input as a start for our analysis, we derived an estimate of
the change in energy produced by a narrow rectangular pulse. By viewing our “change in energy
function” AH, as an operator on orbits of the unforced system, we derived expressions defining
those points on the orbit at which an impulsive input would produce the maximum and minimum
changes in energy. This information was used in §3 as a basis for the synthesis of control laws. The
proposed control law consists of a sequence of rectangular pulses which produce a desired net change
in energy. Under some mild assumptions, we showed that a finite number of appropriately-sized in-
puts produces the desired finite change in energy. The theory of §2 and §3 was applied to the cart
and pendulum in §4. In simulations and laboratory experiments, our simple control law performed




Cart Acceleration [m/secA2] Cart Velocity {m/sec)

-40

_NU 1! N 2] 3 3 Vs

-60

Cart Position [m]

()

Figure 10: (a) Acceleration, (b) velocity, and (c) position of the cart vs. time for swing-up of
pendulum. .

pendulum swing-up, and in the simulations was able to steer the system to the stable manifold of the
inverted equilibrium. In the experiments, impulsive control steered the system into a neighborhood
of the inverted equilibrium, where a linear controller performed the final stabilization.

‘What makes this method of control attractive in these types of problems is its simplicity, which
is best illustrated in the cart and pendulum application. In future publications, we will compare
the performance of our swing-up controller to other control methods. One of our goals is to extend
the analysis presented here to n-DOF Hamiltonian systems. Because of the nontrivial dynamics of
multi-degree-of-freedom, coupled systems like kinematic chains, it is not completely clear how the
theory presented here extends in the n-DOF case. We have found, however, that it is possible to
extend the theory (with some modification) under certain conditions. This work has been shown
to be useful in rigid body reorientation. We shall present this analysis in subsequent publications.
Finally, current work has shown that impulsive controls can be used in conjunction with open-
loop, “structure-creating” controls, such as high frequency periodic inputs (See [2],[3},[6], and [11].),
to form closed-loop hybrid controllers. In this scenario, the impulsive control steers the system
around the phase space structure created by the open-loop forcing. Details on this work will appear
elsewhere.
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Figure 1: Pendulum-driven rimless wheel

ANALYSIS OF THE PENDULUM-DRIVEN RIMLESS WHEEL WITH CONSTANT
PENDULUM ANGLE

G.W. Howell

Boston University
Robotics Laboratory
44 Cummington St.
Boston, MA 02215

January 14, 1998

Abstract — Tad McGeer had encouraging success in studying a rimless wheel rolling down a slope as a
precursor to studying passive bipedal walking down a slope. In an effort to understand the method by which
an otherwise passive walking robot might be controlled by a motorized pendulum mounted to its hip, we
present here a study of a pendulum-driven rimless wheel, where a motor holds the pendulum at a constant
angle with respect to world coordinates. This document describes the derivation of the system dynamics
equation. Part of the dynamics is a momentum-conserving collision at each successive foot fall. This collision
equation describes the transition of the system into the next step. Also described is a method of finding the
steady-state trajectory through iterative simulation. Simulation data for a sample system is presented as an
aid to the reader’s tuition.

1 INTRODUCTION

The first task performed by Tad McGeer in developing his passive biped robot was to study the passive
dynamics of a rimless wheel rolling down a slope [3]. From his study he found average wheel speeds for
varying values of slope angle, wheel spoke separation, and wheel moment of inertia. This data helped him
select physical parameters for his biped walker such that the leg swing period would match the speed of the
walker. A similar procedure will allow us to design a pendulum-driven biped walker.

Figure 1 shows the pendulum-driven rimless wheel system. The rimless wheel is unactuated at the
ground level and is free to rotate about the stance spoke without slipping. A motor connecting the pendulum
to the wheel may, in general, force the pendulum to follow an arbitrarily specified trajectory. For this first
analysis, however, the motor is used to maintain the pendulum at a constant angle, , with respect to the
horizontal. Figure 1 shows the wheel rotating about the current stance spoke, during which time its behavior
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is governed by the equation of motion (derived in section 2). At the instant the next spoke hits the ground,
however, the impulsive collision will instantaneously change the speed of the wheel. To keep the pendulum
at the constant angle «, the motor must simultaneously apply an impulse to adjust the pendulum speed to
match the new wheel speed. The collision equation is derived in section 3.

Section 4 describes the iterative simulation method of finding the steady state trajectory and features
some simulation results for a sample rimless wheel system.

2 DYNAMICS EQUATIONS

The equations of motion for the pendulum-driven rimless wheel are generated by calculating the Lagrangian
for the system, then taking the proper derivatives to form Lagrange’s Equations. This section reports, briefly,
on the details of finding the equations of motion.

Figure 2 shows the vectors and physical parameters needed to derive the equations of motion for the
pendulum-driven wheel system. All spokes except for the stance spoke and the collision spoke have been

Figure 2: Parameters for the pendulum-driven wheel

omitted for clarity. The wheel has mass m and moment of inertia I. The angle between two consecutive
spokes of the rimless wheel is 2ag. The pendulum is a point mass with mass k,,m at the end of a massless
pendulum shaft of length k¢¢. The vector 73 points to the center of mass of the wheel with respect to the
stance contact point. Similarly, the vector 712 points to the tip mass of the pendulum bob w1th respect to
the stance contact point. The vectors are given by

£siny; 14 Lcosyy k
[€sinyy + kelsin (71 +72)] 7 + [€cosyy + kel cos (1 + 72)] k

11

T12
The velocities of the wheel center of mass, 13, and the pendulum tip mass, 712, may be found by taking the
time derivative of 71; and 72, respectively.
The kinetic energy of the wheel is given by
d")’l 1

Twheel I— +'_ ”'U1“2
2 dt

For simplification purposes, we define the radius of gyration of the wheel, rgy,, to satisfy the equation

2,2
I=mbrg,.

Then the kinetic energy for the wheel becomes

1 dn? 1 ..
Twheel = 5 €2 Zyr dt + §m“’011”9. (1)




The potential energy of the wheel is due to the force of gravity and is given by
Vu)heel =mgrii,, (2)

where 711, is the vertical component of the 71; position vector. In the same fashion, the kinetic and potential
energies of the pendulum may be found to be

1 -
Tpend = ik/'m"n”vm”2
Vpend = kmmg 712,

The Lagrangian, £, for the system is given by the sum of all the kinetic energies minus the sum of all

the potential energies:
L=>"T-V
Since there is no form of actuation between the ground and the stance leg, while a motor with torque 7
actuates the pendulum with respect to the wheel, Lagrange’s equations for the system are
d oL oL
d
dt 8( __(_;_Yt_l_) O
d_oc__oc
d
dt a(—d’%) Ovs

= 0 )
=7 @)

In this work, it is assumed that the motor is driven such that the pendulum maintains a constant angle,
K, with respect to the horizontal. From figure 2 we see that the relation between &, v1, and ¥, is

™
T2 =5 TNtk

2
For the pendulum to remain motionless, further, % = —%1—. Plugging these relations into the first equation
of motion, equation 3, we find that the acceleration of the wheel is
2 .
@2y _ kmkg cos (m1 — n)% + (14 km)siny; — $kmke cosk 5)
dt? 1+ kn + rgy, — kmkesin (v1 — k)

To simplify the equations, a new time variable is introduced:

g
t =t )=
new \/;

Letting “dots” denote differentiation with respect to t,e.w, equation 5 becomes

. kmke cos (v —5)712+(1+km) sin y; —kmke cOS K (6)

N 1+km+r§yr—kmk5 sin (71—k)

Note that equation 6 is independent of the wheel mass, gravitational acceleration, and leg length. The
manner in which the variables have been chosen requires that just five parameters be specified to completely
define the pendulum-driven system: (ag, Tgyr, km, k¢, £).

3 COLLISION

When the next spoke of the rimless wheel collides with the ground, the system will instantaneously lose
speed. The following analysis of the system collision follows one outlined by Hurmuzlu and Chang for
planar kinematic chains [2]. It is based upon the laws of conservation of angular impulse and momentum,



conservation of linear impulse and momentum, an assumption on the elasticity of the collision, the frictional
relationship between the horizontal and vertical components of the impulse delivered to the wheel by the
ground, and the desired relationship between the final speeds of the wheel and the pendulum.

Figure 3 shows the three phases of the collision which must be considered. Figure 3a shows the wheel an
instant before collision. The wheel is rotating about the left spoke with known speed 4; while the pendulum
is rotating about the hub with known speed 4,. The right spoke is shown as a dotted line to emphasize that
it is not yet supporting the weight of the wheel. At the moment of impact, shown in figure 3b, the ground

' '
‘

a) Before Collision b) Collision ¢) After Collision
Figure 3: Parameters of interest during collision

under the collision foot applies an impulsive force with unknown components F, and F,. To maintain a
desired relationship between the angular speeds of the wheel and pendulum, the motor applies an impulsive
torque with unknown magnitude r. For simplicity, let these impulsive forces be represented by Dirac delta
functions: F(t) = F 6(t), 7(t) = 7 6(t). After the collision, figure 3c, the stance leg lifts off the ground with
unknown speed components dX and dZ, while the wheel and pendulum have two new unknown rotational
speeds, 4 and 44. The assumptions in this collision analysis are 1) the impact is instantaneous point impact,
2) the geometry of the system is unchanged during impact, and 3) all non-impulsive forces (due to gravity
or centripetal acceleration) are small compared to the impulses and may be neglected. Note that all primed
(') values in this analysis represent after-collision values.
We must solve for a vector with seven unknowns:

T = (11,42, dX, dZ, Fy, Fz,7)7

The only two known quantities we have are the speeds of the wheel and pendulum prior to impact: '7 =
(1,%2). We may construct the matrix equation A% = B¥ with knowledge of the following conservation laws
and relations. '

Angular Impulse and Momentum - The principle of impulse and momentum states that the angular
momentum of a system is only changed by the application of an external torque:

tl
L+ Z/O Tegtdt = L. (7)

In equation 7, L is the angular momentum of the system at time 0, 7.;; is a torque external to the system
which is applied between times 0 and #', and L' is the angular momentum of the system at time ¢'.

We have two separate angular momentum equations we may consider for the pendulum-driven rimless
wheel. The first equation involves the angular momentum of the system about the stance contact point, L.
[We could have chosen any arbitrary point to calculate the angular momentum about, but this choice of axis
yields relatively simple results.] This angular momentum, before impact, is given as:

Ly =mi?rl A1 +m (Fu X 011) + kmm (P12 X 012)



At impact the torques from the impulsive forces and torque shown in figure 3b are added as provided by
equation 7. Note that, as impulses, they require no further integration. The torque contribution from
the ground forces is found by: Torque = (7 x F ). The contribution from ground force F, is zero since
the direction of this force vector goes through the axis of rotation. The motor torque impulse, 7, doesn’t
affect the angular momentum of the system because its torque is internal to the system. Hence the total
external torque impulse felt by the system (about the stance point axis) is given by (—2lF, sin~;)é(t). The
conservation of angular momentum equation (7) becomes

L, + /(—2le siny;)d(t)dt = L,, which we write out explicitly as
ml2r§y,’y1 +m (Fn X 1711) + kmm (Flz X ’[1‘12) - QZFy sin'yl = leT‘:yr’iI; +m (7711 X 1711/) + kmm (Flg X 1712l)
(8)
where simple vector analysis shows that
S dr > .
7 = - +dXi+dZk,
dtnew
- 7 dFlQ i 2
vz = +dXi+dZk,
d new

and the rotational speeds in the ¥’ velocities are the ones after impact (i.e. (¥1,%5)).

The second equation for the collision analysis involves the principle of angular impulse and momentum
(equation 7) of just the pendulum about the wheel hub. The pendulum’s angular momentum just before
impact is:

Lp = kmm ((Flg —_ F]_]_) X '(712)

The only external torque contribution which the pendulum feels (since the ground forces act through a spoke
and, hence, through the pendulum’s axis of rotation) is the motor torque, 7. The conservation equation (7)
thus becomes

L,

L, + /7’5 (t)dt

kn.m ((T_"lg _'Fll) X 2712) +71 = kpm ((Fm - Fll) X 1712,) (9)

Linear Impulse and Momentum - The principle of linear impulse and momentum contributes two
additional equations. The first equation obtained from this principle states that the total horizontal linear

momentum of the system may only be modified by forces in the horizontal direction. Given that the linear
momentum in the horizontal direction before and after collision is given by

P, = mun, +kamu,, and

! ! !
P! = mu, +knmua,,

the conservation of horizontal linear impulse and momentum equation is

Il

P+ / F.6(¢t)dt P,

mui, +kmmuie, + F; = mon, + kamu, (10)

Similarly, another equation comes from consideration of the linear momentum of the system in the
vertical direction:

Il

P, + / F.6(t)dt P,/

muiy, +knmuy, + F,

muir. + kmmurz, (11)



Coefficient of Restitution — The fifth system equation is the coefficient of restitution equation-a general
collision equation. The coefficient of restitution is a representation of how much “bounce” there is in the
system. In general the restitution equation takes the form:

v, +evp, =0, (12)

where vp,_ is the vertical velocity of the collision spoke w.r.t. an inertial frame. The assumption we will
make for the rimless wheel is that the ground collisions are completely inelastic. Hence the coefficient of
restitution, e, will be equal to zero and the restitution equation will become:

vp,' =0 .

Resolving the Impulse Vector — The sixth system equation merely relates the two impulse vectors to
each other by an unknown factor u: -

F, =uF, - (13)
This factor will relate to the coefficient of friction between the collision spoke and the ground.
Rotational Speed Requirements — The final system equation involves our desired speed relation between
the pendulum and the wheel after collsion:

Yo = —H , (14)
This keeps the pendulum at absolute angle x even after the collision. .
SOLUTION METHOD - Equations 8 through 14 may be combined into the single matrix equation
A@ = B#7 in the following form:

2sin o
A A A A [\] —-—Z—Q V]
Au kn:.? kmk;finn _kmkl:co-n o "; , A1 Az
12 e b ail i 7 me hé! A2 —km k2
sin x - m 5 kmky sinx
413 kmk cos x ¢ 1+ok me ; ° ;§ — 413 kmky cos x 1
= 0 0 = ° ° 0 F: =t 0
o 0 0 o S - o " ] o
;1;2. ;1;5- 0 0 [ [ o
(15)
where, for compactness of notation, we have labeled the following
Ay = =1 —'rgy, — km (1 + 2kesin(ao + &) + k7)
A, = —kmkg(kz + sin(ao + Ii))
(1 + k) cosap + kmkesink
Az =
4
(1+ k) sinag + kpkecosk
Ay = - 7

In solving equation 15 the first thing we do, as discussed before, is to set e to 0, which represents a perfectly
inelastic collision. Then, since it is undesirable for the new stance spoke to slide after collision, d.X is set to
zero and equation 15 is solved for the unknown force coefficient which prevents slipping, u

—2cosap[(l + k) sin ag — kn ki cos k]
[(1 + kpm )(1 + cos 2a9) + 2rgy, + 2k k; cos ag sin ]
Note that this force coefficient has the same relationship as one would expect of the friction relationship:
Firiction = WstaticFnormat- I | < istatic for the surface then the friction force is sufficient and the wheel

does not slip. After checking that the calculated u is satisfactory, it is plugged back into equation 15 to solve
for the remaining unknowns, including 4;:

(16)

11._ _ (1+km) cos 2ao+r9y,+kmkl sin (ag+k)
M =n= (1+km)+rw, —kmki sin (ap—k)

(17)

Hence the speed of the pendulum-driven rimless wheel after collision is simply a function of the system
parameters (g, 7gyr, km, ke, £). The collision efficiency, 7, indicates how much wheel speed remains after
each collision. For example, if the wheel had a complete rim, rather than a finite number of individual
spokes, ag would be zero and 1 would be one.



4 SIMULATION RESULTS

In this section, we define a default wheel with pendulum system. We describe the procedure used to find the
steady-state trajectory. We analyze the collision equation for the default system to find the pendulum angle
which yields the maximum collision efficiency. We present the results of a battery of system simulations
which show the steady-state period versus pendulum angle. ,

One problem with simulating this system is the large number of system parameters which must be
selected. There are five separate parameters which must be specified before the pendulum-driven rimless
wheel system is defined: (@o,gyr, km, k¢, ). The temporary solution arrived at is to fix four of the parameters
and call it the default system. Table 1 shows the parameters used for the default System. While the results
from this default system will not be completely general, they are representative of a probable final system

design.

Parameter Value
Qg 0.314159

rgyr 0-3
km 0.1
ki 0.5

Table 1: Parameter values for default rimless wheel system.

Steady-state speed — A complete system simulation cycle starts with the stance spoke at v = alphag and
the wheel at some initial rotational velocity. The equation of motion, equation 6, is integrated until the
stance spoke angle reaches ap, which indicates that the next spoke is ready to collide with the ground. At
this point the after-collision velocity, 4/, is calculated from equation 17. The simulation may be continued
by restarting the system at v = alphao with the new value of rotational velocity. The steady-state trajectory
for the system may be found by iterating the simulation until the solution stabilizes.

Figure 4a shows the steady-state wheel trajectory of the default system with £ = 0 for two cycles of
the motion. Figure 4b shows the corresponding velocity profile of the motion. At collision (tnew = 2.277)
the wheel loses 15.3 % of its speed.

7(tnew) "Y(tnew)

tnew

tnew

(a) (b)

Figure 4: Steady-state trajectory of default system with x =0

One fruitful question we might ask regards the maximum collision efficiency, 7, possible for the default
system. The higher the collision efficiency, after all, the less energy is lost at each step. Figure 5 shows a
plot of collision efficiency vs. pendulum angle for the default rimless wheel system. Differentiating equation
17 with respect to & yields a maximum collision efficiency of 0.848 at £ = 0.248 rad.



Figure 5: Plot of efficiency vs. pendulum angle for default system

Figure 6 shows simulation data for the steady-state period of the default system as a function of the
pendulum angle, . Since the maximum efficiency was at x = 0.248 rad, one might expect that the minimum
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VFigure 6: Plot of steady-state cycle period vs. pendulum angle for default system

cycle period (and hence the maximum steady-state wheel speed) in figure 6 would be located near x = 0.248
rad. However, figure 6 shows that the maximum wheel speed occurs very close to £ = 0 rad, specifically
at £k = 0.02 rad. This is because the acceleration of the wheel during the dynamics phase of the motion
is maximized by & = 0 rad. It is apparent that the pendulum’s effect on the dynamics equation is more
significant than its effect on the collision efficiency equation. Figure 7 shows the pendulum-driven rimless
wheel system in the two competing configurations. In figure 7a, the pendulum angle maximizes the collision
efficiency. Figure 7b shows the pendulum angle maximizing the steady-state speed of the wheel.

5 CONCLUSION

This paper described the pendulum-driven rimless wheel system. It derived the dynamics equation and the
collision equation for such a system in the special case where the motor maintains the pendulum at a constant
angle relative to horizontal. Simulation results were presented to show that the steady-state trajectory of
such a system may be found by iterative simulation. The simulation results also showed that the maximum
steady-state speed of the wheel will be arrived at when the pendulum is held out nearly horizontally.



a) Maximum efficiency b) Maximum speed

Figure 7: Pendulum configurations which maximize different values for the default system
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